
Talisman: Commodity Realtime 3D Graphics for the PC
Jay Torborg James T. Kajiya

Microsoft Corporation
e

s

-

e,
ABSTRACT

A new 3D graphics and multimedia hardware architecture, cod-
named Talisman, is described which exploits both spatial and
temporal coherence to reduce the cost of high quality animation.
Individually animated objects are rendered into independent
image layers which are composited together at video refresh rates
to create the final display. During the compositing process, a full
affine transformation is applied to the layers to allow translation,
rotation, scaling and skew to be used to simulate 3D motion of
objects, thus providing a multiplier on 3D rendering performance
and exploiting temporal image coherence. Image compression i
broadly exploited for textures and image layers to reduce image
capacity and bandwidth requirements. Performance rivaling high
end 3D graphics workstations can be achieved at a cost point of
two to three hundred dollars.

CR Categories and Subject Descriptors: B.2.1 [Arithmetic and
Logic Structures]: Design Styles - Parallel, Pipelined; C.1.2
[Processor Architectures]: Multiprocessors - Parallel processors,
Pipelined processors; I.3.1 [Computer Graphics]: Hardware
Architecture - Raster display devices; I.3.3 [Computer Graphics]:
Picture/Image Generation - Display algorithms.

INTRODUCTION

The central problem we are seeking to solve is that of attaining
ubiquity for 3D graphics. Why ubiquity? Traditionally, the
purpose of computer graphics has been as a tool. For exampl
mechanical CAD enhances the designerÕs ability to imagine
complex three dimensional shapes and how they fit together.
Scientific visualization seeks to translate complex abstract
relationships into perspicuous spatial relationships. Graphics in
film-making is as a tool that realizes the vision of a creative
imagination. Today, computer graphics has thrived on being the
tool of choice for augmenting the human imagination.

However, the effect of ubiquity is to promote 3D graphics from a
tool to a medium. Without ubiquity, graphics will remain as it

jaytor@microsoft.com kajiya@microsoft.com

does today, a tool for those select few whose work justifies
investment in exotic and expensive hardware. With ubiquity,
graphics can be used as a true medium. As such, graphics can be
used to record ideas and experiences, to transmit them across
space, and to serve as a technological substrate for people to
communicate within and communally experience virtual worlds.
But before it can become a successful medium, 3D graphics must
be universally available: the breadth and depth of the potential
audience must be large enough to sustain interesting and varied
content.

How can we achieve ubiquity? There are a few criteria: 1)
hardware must be so inexpensive that anyone who wants it can
afford it, 2) there must be a minimum level of capability and
quality to carry a wide range of applications, and 3) the offering
must carry compelling content. This paper will treat the first two
problems and a novel hardware approach to solving them.

There are two approaches to making inexpensive graphics
hardware. One approach is to make an attenuated version of
conventional hardware. In the next section we make an analysis
of the forces driving the cost of conventional graphics
architectures. By mitigating some of these costs, one may obtain
cheaper implementations with more modest performance. Over a
dozen manufacturers are currently exploring this approach by
cutting down on one or another cost factor. The risk of this
approach, of course, is that each time one cuts cost, one also cuts
performance or quality.

An alternative approach is to look to new architectures that have a
fundamentally different character than the conventional graphics
pipeline. This is an approach pioneered at the high end by the
Pixel Planes project [Fuc89], PixelFlow [Mol92], and various
parallel ray tracing machines [Nis83, Pot89]. At the low end,
Nvidia [Nvi95] is offering such a different architecture. We
present an architecture that very much is in the spirit of this latter
path, delivering a high performance, high quality graphics system
for a parts cost of $200 to $300.

The second criterion, quality, must be evaluated in terms of the
applications and content to be executed by the machine. Here we
make a fundamentally different assumption from that underlying
the conventional graphics pipeline. We believe that the
requirements and metric of performance for a ubiquitous graphics
system to be much different than that for a system designed
primarily for mechanical CAD. In MCAD the ability to
accurately and faithfully display the shape of the part is a strict
requirement. The metric of performance is often polygons per
second, but ultimate result is frame rateÑa low-cost system will
display at a much slower rate than a high-performance system, but
both will be able to display the shape accurately with the exactly
the same image. One of our central assumptions is that in
applications and content for ubiquitous graphics this situation is
reversed. In a system to be used as a medium, rather than as a
tool, the ability to smoothly convey motion, to be synchronized
with sound and video, and to achieve low-latency interaction are
critical requirements. We believe the fidelity of the shapes, the

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

y

,

-

r

.

l

l

y

d

ce
al

,
le

ry
h the

en

ce

 for

e
g

precise nature of their geometric relationships, and image qualit
are performance metrics. In our architecture we have striven to
make it possible for one to always be able to interact in real-time
at video frame rates (e.g. 72-85 Hz). The difference between
high-cost and low-cost systems will be in the fidelity and quality
of the images.

FUNDAMENTAL FORCES

A graphics system designer struggles with two fundamental
forces: memory bandwidth, and system latency. To achieve low
cost, a third force looms large: memory cost.

Space considerations do not allow us to detail all the bandwidth
requirements for a conventional graphics pipeline. The
considerations are straightforward: for example, simple
multiplication shows display refresh bandwidth for a 75 Hz,
640x480x8 frame buffer requires 23MB per second, while that fo
1024x768x24 requires 169 MB per second. If we add the
requirements for z-buffering (average depth complexity of 3 with
random z-order), texture map reads with various antialiasing
schemes (point sample, bilinear, trilinear, anisotropic), and
additional factors imposed by anti-aliasing, we obtain the
following chart:

Memory
Bandwidth

Requirement
Mbytes

1000

2000

3000

4000

5000

6000
7000

8000
9000

10000

11000

12000
13000

190 340
690 1100

1800

4300

6900

12,000

640x480x16 bit, 30 Hz update, 16 bit Z
8 bit palletized point sampled texture

640x480x16 bit, 30 Hz update, 24 bit Z
16 bit bilinear filtered texture

800x600x16 bit, 30 Hz update, 24 bit Z
16 bit trilinear filtered texture

800x600x24 bit, 45 Hz update, 24 bit Z
16 bit trilinear filtered texture

1024x768x24 bit, 45 Hz update, 24 bit Z
16 bit trilinear filtered texture

1024x768x24 bit, 75 Hz update, 24 bit Z
32 bit trilinear filtered texture

1024x768x32 bit, 75 Hz update, 24 bit Z
32 bit anisotropic filtered texture

1024x768x32 bit, 75 Hz update, 24 bit Z
32 bit anisotropic filtered texture,
anti-aliased polygon edges

Memory Bandwidth Requirements for Conventional Graphics Pipeline
for various 3D Graphics Performance, Quality, and Resolutions

Memory bandwidth is a key indicator of system cost. The left
hand two columns indicate where current 3D accelerators for the
PC are falling. A full up SGI RE2—a truly impressive machine—
boasts a memory bandwidth of well over 10,000 MB per second
Its quite clear that SGI has nothing to fear from evolving PC 3D
accelerators, which utilize traditional 3D pipelines, for some time
to come.

The second force, system latency, is handled mainly through
careful design of the basic algorithms of the architecture, as wel
as careful pipelining to mask memory latencies.

The third force, memory cost, traditionally has not been of great
concern to high-end systems because achieving the aggregate
bandwidth has required large amounts of memory. The next cha
shows the results of calculating memory requirements for a
conventional graphics pipeline with different levels of
performance.

Over the last two decades, the drop in price per bit of
semiconductor memory has been phenomenal. A look at an ear
DRAM vs. today’s reveals interesting trends.
rt

y

Memory
Capacity

Requirement
Mbytes

4

8

12

16

20

24
28

32
36

40

44

48
52

2.6 4
7 8

13

19 20

45

640x480x16 bit, 16 bit Z, 2 texels/pixel
8 bit palletized point sampled texture

640x480x16 bit, 24 bit Z, 3 texels/pixel
16 bit bilinear filtered texture

800x600x16 bit, 24 bit Z, 3 texels/pixel
16 bit trilinear filtered texture

800x600x24 bit, 24 bit Z, 3 texels/pixel
16 bit trilinear filtered texture

1024x768x24 bit, 24 bit Z, 3 texels/pixel
16 bit trilinear filtered texture

1024x768x24 bit, 24 bit Z, 3 texels/pixel
32 bit trilinear filtered texture

1024x768x32 bit, 24 bit Z, 3 texels/pixel
32 bit anisotropic filtered texture

1024x768x32 bit, 24 bit Z, 3 texels/pixel
32 bit anisotropic filtered texture,
anti-aliased polygon edges

Memory Capacity Requirements for Conventional Graphics Pipeline
for various 3D Graphics Performance, Quality, and Resolutions

Note that although capacity has improved tremendously, latenc
and bandwidth have not made similar improvements. There is
every indication that these trends will continue to hold.

These charts suggest that achieving high-quality imagery using
the conventional graphics pipeline is an inherently expensive
enterprise. Those who maintain that improvements in CPU an
VLSI technology are sufficient to produce low-cost hardware or
even software systems that we would consider high-performan
today, have not carefully analyzed the nature of the fundament
forces at work.

DRAM Technology Improvements

1976 1995 Change
per Year

Change

Access Time

Bandwidth
(per data pin)

Capacity

Cost per MByte

350 ns

2 Mb/sec

4 Kbit

$ 16,500

50 ns

22 Mb/sec

16 Mbit

$ 23

7X

11X

4096X

720X

10%

12%

50%

40%

IMAGE PROCESSING AND 3D GRAPHICS

Although the conventional graphics pipeline uses massive
amounts of memory bandwidth to do its job, it is equally clear
that much of this bandwidth is creating unused, if not unusable
capacity. For example, the conventional pipeline is fully capab
of making every frame a display of a completely different
geometric model at full performance. The viewpoint may skip
about completely at random with no path coherence at all. Eve
possible pixel pattern may serve as a texture map, even thoug
vast majority of them are perceptually indistinguishable from
random noise. A frame may be completed in any pixel order ev
though polygons tend to occupy adjacent pixels.

In our architecture we have sought to employ temporal coheren
of models, of motion, of viewpoint, and spatial coherence of
texture and display. We have found that this approach greatly
mitigates the need for large memory bandwidths and capacities
high-quality systems.

A fundamental technique we have used repeatedly is to replac
image synthesis with image processing. That image processin

nt

em
ip

et.

ny

in

th

ted

y s

uc

irs

ty)

ile
on

 a

y

e

er

e

ity

 a

ls
sion
and 3D graphics have always had an intimate theoretical
relationship, is evident to anyone perusing the contents of a
typical SIGGRAPH proceedings. Even in high-quality off-line
rendering, image processing and composition has served esse
functions for many years. But, with a few exceptions like the
Pixar Image Computer [Lev84], Regan’s image remapping syst
[Reg94], and the PixelFlow architecture [Mol92] this relationsh
has not extended into the physical embodiment of hardware.

In a sense, one can view texture mapping as an example of
marrying images and 3d graphics early in the pipeline. Segal,
al. [Seg92] have shown that texture mapping, especially when
considered in context with multiple renderings can simulate ma
lighting effects. We have adopted this idea for the real-time
context, calling it multi-pass rendering.

Image compositing and image morphing have been long used
the utilization of temporal coherence—at least in software
systems, [Coo87, Che94, Che95, McM95]. Our architecture
extends these ideas into the real-time hardware domain, for the
case of affine image transformations.

HARDWARE ARCHITECTURE

There are four major concepts utilized in Talisman, these are:

• Composited image layers with full affine transformations.

• Image compression.

• Chunking.

• Multi-pass rendering.

Composited Image Layers

The Talisman hardware does not incorporate a frame buffer in
traditional sense. Instead, multiple independent image layers are
composited together at video rates to create the output video
signal. These image layers can be rendered into and manipula
independently. The graphics system will generally use an
independent image layer for each non-interpenetrating object in
the scene. This allows each object to be updated independentl
that object update rates can be optimized based on scene
priorities. For example, an object that is moving in the distant
background may not need to be updated as often, or with as m
accuracy, as a foreground object.

Image layers can be of arbitrary size and shape, although the f
implementation of the system software uses only rectangular
shaped layers. Each pixel in a layer has color and alpha (opaci
information associated with it so that multiple layers can be
composited together to create the overall scene.

Several different operations can be performed on these image
layers at video rates, including scaling, rotation, subpixel
positioning, and skews (i.e., full affine transformations). So, wh
image layer update rates are variable, image layer transformati
(motion, etc.) occur at full video rates (e.g. 72 to 85 Hz),
resulting in much more fluid dynamics than can be achieved by
conventional 3D graphics system that has no update rate
guarantees.

Many 3D transformations can be simulated by 2D imaging
operations. For example, a receding object can be simulated b
scaling the size of the image. By utilizing 2D transformations on
previously rendered images for intermediate frames, overall
processing requirements are significantly reduced, and 3D
rendering power can be applied where it is needed to yield the
highest quality results. Thus, the system software can employ
ial

e

o

h

t

s

temporal level of detail management and utilize frame-to-frame
temporal coherence.

By using image layer scaling, the level of spatial detail can also b
adjusted to match scene priorities. For example, background
objects (e.g., cloudy sky) can be rendered into a small image lay
(low resolution) which is then scaled to the appropriate size for
display. By utilizing high quality filtering, the typical low
resolution artifacts are reduced.

A typical 3D graphics application (particularly an interactive
game) trades off geometric level of detail to achieve higher
animation rates. The use of composited image layers allow the
Talisman system to utilize two additional scene parameters—
temporal level of detail and spatial level of detail—to optimize the
effective performance as seen by the user. Further, the Talisman
system software can manage these trade-offs automatically
without requiring application support.

Image Compression

Talisman broadly applies image compression technology to solv
these problems. Image compression has traditionally not been
used in graphics systems because of the computational complex
required for high quality, and because it does not easily fit into a
conventional graphics architecture. By using a concept we call
chunking (described below), we are able to effectively apply
compression to images and textures, achieving a significant
improvement in price-performance.

In one respect, graphics systems have employed compression to
frame buffer memory. High end systems utilize eight bits (or
more) for each of three color components, and often also include
an eight bit alpha value. Low end systems compress these 32 bits
per pixel to as few as four bits by discarding information and/or
using a color palette to reduce the number of simultaneously
displayable colors. This compression results in very noticeable
artifacts, does not achieve a significant reduction in data
requirements, and forces applications and/or drivers to deal with
broad range of pixel formats.

The compression used in Talisman is much more sophisticated,
using an algorithm similar to JPEG which we refer to as TREC to
achieve very high image quality yet still provide compression
ratios of 10:1 or better. Another benefit of this approach is that a
single high quality image format (32 bit true color) can be used
for all applications.

Chunking

A traditional 3D graphics system, or any frame buffer for that
matter, can be, and usually is, accessed randomly. Arbitrary pixe
on the screen can be accessed in random order. Since compres
algorithms rely on having access to a fairly large number of
neighboring pixels in order to take advantage of spatial
coherence, and only after all pixel updates have been made, the
random access patterns utilized by conventional graphics
algorithms make the application of compression technology to
display buffers impractical.

This random access pattern also means that per-pixel hidden
surface removal and anti-aliasing algorithms must maintain
additional information for every pixel on the screen. This
dramatically increases the memory size requirements, and adds
another performance bottleneck.

Talisman takes a different approach. Each image layer is divided
into pixel regions (32 x 32 pixels in our reference
implementation) called chunks. The geometry is presorted into

n

o

b

g

ea

e
ty

em
ge
ata

cts

,

g
rd

m.
bins based on which chunk (or chunks) the geometry will be
rendered into. This process is referred to as chunking. Geometry
that overlaps a chunk boundary is referenced in each chunk it is
visible in. As the scene is animated, the data structure is modifie
to adjust for geometry that moves from one chunk to another.

While chunking adds some upstream overhead, it provides seve
significant advantages. Since all the geometry in one chunk is
rendered before proceeding to the next, the depth buffer need o
be as large as a single chunk. With a chunk size of 32 x 32, the
depth buffer is implemented directly on the graphics rendering
chip. This eliminates a considerable amount of memory, and als
allows the depth buffer to be implemented using a specialized
memory architecture which can be accessed with very high
bandwidth and cleared instantly from one chunk to the next,
eliminating the overhead between frames.

Anti-aliasing is also considerably easier since each 32 x 32 chun
can be dealt with independently. Most high-end graphics system
which implement anti-aliasing utilize a great deal of additional
memory, and still perform relatively simplistic filtering. By using
chunking, the amount of data required is considerably reduced (
a factor of 1000), allowing practical implementation of a much
more sophisticated anti-aliasing algorithm.

The final advantage is that chunking enables block oriented ima
compression. Once each 32 x 32 chunk has been rendered (and
anti-aliased), it can then be compressed with the TREC block
transform compression algorithm.

Multi-pass Rendering

One of the major attractions of the Talisman architecture is the
opportunity for 3D interactive applications to break out of the late
1970’s look of CAD graphics systems: boring lambertian
Gouraud-shaded polygons with Phong highlights. Texture
mapping of color improves this look but imposes another
e

d

ral

ly

k
s

y

e

characteristic appearance on applications. In the 1980’s, the id
of programmable shaders and procedural texture maps[Coo84,
Han90] opened a new versatility to the rendering process. Thes
ideas swept the off-line rendering world to create the high-quali
images that we see today in film special effects.

By reducing the bandwidth requirements using the techniques
outlined above, Talisman can use a single shared memory syst
for all memory requirements including compressed texture stora
and compressed image layer storage. This architecture allows d
created by the rendering process to be fed back through the
texture processor to be used as data in the rendering of a new
image layer. This feedback allows rendering algorithms which
require multiple passes to be implemented.

By coupling multi-pass rendering with a variety of compositing
modes, texture mapping techniques [Seg92], and a flexible
shading language, Talisman provides a variety of rendering effe
that have previously been the domain of off-line software
renderers. This includes support of functions such as shadows
(including shadows from multiple light sources), environment
mapped reflective objects, spot lights, fog, ground fog, lens flare
underwater simulation, waves, clouds, etc.

REFERENCE HARDWARE IMPLEMENTATION

The Talisman architecture supports a broad range of
implementations which provide different performance, features,
rendering quality, etc. The reference implementation is targeted at
the high-end of the consumer PC market and is designed to plu
into personal computers using the PCI expansion bus. This boa
replaces functionality that is typically provided by a Windows
accelerator board, a 3D accelerator board, an MPEG playback
board, a video conferencing board, a sound board, and a mode
System HW Partitioning

PCI Bus Polygon
Object

Processor

2Mx8
RDRAM

2Mx8
RDRAM

Image
Layer

Compositor
Media DSP

Talisman VLSI Components

Standard Components

Commodity DRAM Memory

Media
DAC

USB

1394

RGB Video

Audio
Chip

2 Ch Audio

Modem

Compositing
Buffer
o

een

dio
s,
The reference hardware consists of a combination of proprietar
VLSI devices and commercially available components. The
VLSI components have been developed using a top-down
modular design approach allowing various aspects of the
reference implementation to be readily used to create derivativ
designs.

The reference implementation uses 4 Mbytes of shared memor
implemented using two 8-bit Rambus channels. The Rambus
memory provides higher bandwidth than traditional DRAM at
y

y

near commodity DRAM pricing. This shared memory is used t
store image layers and texture data in compressed form, DSP
code and data, and various buffers used to transfer data betw
processing subsystems. A 2MB configuration is also possible,
although such a configuration would have lower display
resolution and would have other resource limitations.

The Media DSP Processor is responsible for video codecs, au
processing, and front-end graphics processing (transformation
lighting, etc.). The reference HW implementation uses the

h

er
y.

ess
Samsung MSP to perform these functions. The DSP combines
RISC processor with a specialized SIMD processor capable of
providing high performance floating point and integer
processing (>1000 MFLOPS/MOPS). A real-time kernel and
resource manager deals with allocating the DSP to the various
graphics and multimedia tasks which are performed by this
system.

The Polygon Object Processor is a proprietary VLSI chip whic
performs scan-conversion, shading, texturing, hidden-surface
l

 a removal, and anti-aliasing. The resulting rendered image lay
chunks are stored in compressed form in the shared memor

The Image Layer Compositor operates at video rates to acc
the image layer chunk information from the shared memory,
decompress the chunks, and process the images to perform
general affine transformations (which include scaling,
translation with subpixel accuracy, rotation, and skew). The
resulting pixels (with alpha) are sent to Compositing Buffer.
M emo ry U s e - T ypical S cenar io N et M emory R equirement s
Image Layer Data S torage
Display R esolution 1024 x 768
Average Image Layer S ize 128 x 128
Average Image Layer Depth Complexity 1.7
Image Layer Data Compress ion F actor 5
Image Layer Memory Management Overhead 51 bytes per 32x32 chunk
Memory Allocation Overhead 4 bytes per 128 bytes
T otal Image Layer Data S torage R equirements 1,171,637 bytes
Dis play Memory Management 64 bytes per image layer 5,222 bytes
T exture Data S torage
Number of T exels 4,000,000 texels
Percent T exels with Alpha 30%
Avg. Number of T exture LODs 6
T exture Data Compress ion Factor 15
T otal T exture Data S torage R equirements 1,415,149 bytes
Command B uffers 53,248 bytes
Audio Output B uffer 2,450 bytes
Audio S ynthes is Data 32,768 bytes
Wav T able B uffer 524,800 bytes
Media DS P P rogram and S cratch Mem 524,288 bytes
T o t al 3 ,729,563 byt es
r

I

or
s
e

h
,

xels
les
Image layer chunk data is processed 32 scan lines at a time fo
display. The Compositing Buffer contains two 32 scan line
buffers which are toggled between display and compositing
activities. Each chip also contains a 32 scan line alpha buffer
which is used to accumulate alpha for each pixel. The Video
DAC includes a USB serial channel (for joysticks, etc.), and an
IEEE1394 media channel (up to 400 Mbits/sec. for connection
to an optional break-out box and external A/V equipment), as
well as standard palette DAC features.

A separate chip is used to handle audio digital to analog and
analog to digital conversion.

The table above indicates the total memory usage for a typica
3D application scenario. For the same scenario, the memory
bandwidth requirements are shown in the following table.

Memory Bandwidth - Typical Scenario
Pixel Rendering (avg. depth complexity 2.5) 32.4 Mbytes/sec
Display Bandwidth 130.0 Mbytes/sec
Texture Reads
Texels per Pixel (anisotropic filtering) 16
Texture Cache Multiplier (avg. texel reuse) 2.5
Texture Read Bandwidth 58 Mbytes/sec
Polygon Command (30,000 polygons/scene) 61.0 Mbytes/sec
Total 3D Pipeline Bandwidth 281.4 Mbytes/sec
POLYGON OBJECT PROCESSOR

The Polygon Object Processor is one of the two primary VLS
chips that are being developed for the reference HW
implementation.

Unique Functional Blocks

Many of the functional blocks in the Polygon Object Process
will be recognized as being common in traditional 3D graphic
pipelines. Some of the unique blocks are described here. Th
operation of this chip is provided later in the paper.

Initial Evaluation - Since polygons are processed in 32 x 32
chunks, triangle processing will typically not start at a triangle
vertex. This block computes the intersection of the chunk wit
the triangle and computes the values for color, transparency
depth, and texture coordinates for the starting point of the
triangle within the chunk.

Pixel Engine - performs pixel level calculations including
compositing, depth buffering, and fragment generation for pi
which are only partially covered. The pixel engine also hand
z-comparison operations required for shadows.

Polygon Object
Processor

Compress

Depth/Stencil/Priority
Buffer

Rasterizer

Pixel
EngineFragment

Buffer

Color
Buffers

Fragment
Resolve

Texture
Cache
Control

Command
and

Memory
Control

Media DSP

RAMBUS
Channels

Image Layer
Compositor

D
ecom

press

Compressed
Texture
Cache

Texture
Filter

Engine

Texture
Cache

Pre-Rasterizer
Primitive
Register

Texture
Read

Queue

Initial
Evaluation

Primitive
Queue Cache

Address
Map

Pixel
Queue
s

 to

d.

s

o

ed
er

 is

e,

 in

e

s.

hat
s

Fragment Resolve - performs the final anti-aliasing step by
resolving depth sorted pixel fragments with partial coverage or
transparency.

Coping with Latency

One of the most challenging aspects of this design was coping
with the long latency to memory for fetching texture data. Not
only do we need to cope with a decompression step which take
well over 100 12.5 ns. cycles, but we are also using Rambus
memory devices which need to be accessed using large blocks
achieve adequate bandwidth. This results in a total latency of
several hundred cycles.

Maintaining the full pixel rendering rate was a high priority in
the design, so a mechanism that could ensure that texels were
available for the texture filter engine when needed was require
The basic solution to this problem is to have two rasterizers -
one calculating texel addresses and making sure that they are
available in time, and the other performing color, depth, and
pixel address interpolation for rendering. While these rasterizer
both calculate information for the same pixels, they are
separated by up to several hundred cycles.

Two solutions were considered for this mechanism - one was t
duplicate the address calculations in both rasterizers; the other
was to pass the texture addresses from the first rasterizer (call
the Pre-Rasterizer in the block diagram) to the second rasteriz
using a FIFO.

In this case, texture address calculation logic in the rasterizers
fairly complex to deal with perspective divides and anisotropic
texture filtering (discussed later). To duplicate this logic in both
rasterizers required more silicon area than using the pixel queu
so the latter approach was chosen.
Die Area and Packaging

The total die area of the Polygon Object Processor is shown
the following table. The die area figures shown here are
estimates since the layout of this part was not complete at th

time of paper submission.

The Polygon Object Processor is implemented using an
advanced 0.35 micron four layer metal 3.3 volt CMOS proces
The die is mounted in a 304 pin thermally-enhanced plastic
package.

IMAGE LAYER COMPOSITOR

The Image Layer Compositor is the other custom VLSI chip t
is being developed for the reference HW implementation. Thi
part is responsible for generating the graphics output from a
collection of depth sorted image layers.

POP Area Calculation 0.35 Micron

Functional Block Gates RAM bits Total Area
RAC Cell 5.17
Memory Interface 4,500 12,288 1.77
Input Logic 10,044 0 1.09
Setup Logic 30,920 0 3.92
Scan Convert 125,510 57,760 18.38
Texture Lookup 83,450 0 8.87
Pixel Logic 86,090 137,216 20.03
Cache Logic 42,000 71,680 10.91
Compression Logic 33,120 32,896 14.62
Decompression Logic 47,000 16,000 6.02

90.77
Testability Gates 50,000 6.55
Interblock Routing Area 9.73

Core Area 107.05
I/O Cells Area 21.69
Total Area 128.75

Image Layer
Compositor

Polygon

Obj. Proc.

Rasterizer

Compositing
Buffer

Controller

Image Layer
Cache

Control

Interface
Control

To Comp.

Buffer

D
ecom

press

Compressed
Image layer

Cache

Image Layer
Filter

Engine

Image Layer
Cache

Pre-Rasterizer
Image Layer

Header
Registers

Image Layer
Read

Queue

Initial
Evaluation

Image Layer
Queue

Cache
Address

Map
t

e

ed
s

e

be
,

ing
Comparison with Polygon Object Processor

You will notice that this block diagram is similar in many ways
to the Polygon Object Processo. In fact, many of the blocks are
identical to reduce design time. In many ways, the Image Layer
Compositor performs the same operations as triangle
rasterization with texture mapping.

In addition to the obvious differences (no depth buffering, anti-
aliasing, image compression, etc.) there are a couple of key
differences which significantly affect the design:

Rendering Rate - the Image Layer Compositor must composite
the images of multiple objects at full video rates with multiple
objects overlapping each other. To support this, the rendering
rate of the Image Layer Compositor is eight times higher than
the Polygon Object Processor.

Texture/Image Processing - the sophistication of the image
processing used by the Image Layer Compositor is significantly
reduced in order to keep silicon area to a reasonable level.
Instead of performing perspective correct anisotropic filtering,
this chip performs simple bi-linear filtering and requires only
linear address calculations (since perspective transforms are no
supported).

These differences significantly affect the approach used to deal
with memory latency. The rasterizer in the Image Layer
Compositor is significantly simpler due to the simplified image
processing, and the higher pixel rate requires the pre-rasterizer
to be much further ahead of the rasterizer. As a result, the Imag
Layer Compositor eliminates the Pixel Queue and simply
recalculates all the parameters in the second rasterizer.

Die Area and Packaging

The total die area of the Image Layer Compositor is shown in
the following table. The die area figures shown here are
estimates since the layout of this part was not complete at the
time of paper submission.
ILC Area Estimate 0.35 Micron

Functional Block Gates RAM bits
Interface Controller 2,290 2,048 1.40
Initial Evaluation 10,514 0 1.35
Header Registers 7,550 2,048 1.25
Pre-Rasterizer 21,018 0 2.65
Rasterizer 19,019 0 2.35
Cache Logic 41,350 71,636 18.30
Decompressor 86,000 25,856 21.00
Filter Engine 21,608 0 4.10
Compositing Buffer Controller 1,200 0 0.25

Testability Gates 50,000 6.60
Interblock Routing Area 4.65

Core Area 63.90
I/O Cells Area 16.99

Total Area 80.89

The Image Layer Compositor is implemented using an advanc
0.35 micron four layer metal 3.3 volt CMOS process. The die i
mounted in a 304 pin thermally-enhanced plastic package.

OPERATION

This section describes the overall operation of the system and
discusses some of the key features.

Objects and Image Layers

As in a traditional 3D graphics system, objects are placed in th
virtual environment by the application specifying their position,
orientation, and scale relative to the coordinate system of the
virtual environment. The transform engine uses this
information, in conjunction with the viewpoint specification to
construct the synthetic scene.

In this system, however, independent objects are rendered into
separate image layers which are composited together at video
rates to create the displayed image. Independent objects can
described directly by the APIs (in the case of the Windows PC
this is done using DirectDraw and Direct3D [Mic95]), or can be
calculated automatically based on object hierarchy and bound
boxes. The latter approach will likely be used for virtual reality
environments described using behavior languages where the
relative motion of objects can be predicted.

 in

D

ies.

e

ted
ct.

 the

.

to

the

se

e

a

he

s,
r

e

d

In our implementation, the host processor maintains control of
real-time display operation. The object database is maintained
host memory, and primitive descriptions are passed to the
graphics system as needed for rendering. Unlike a traditional 3
graphics system, the entire display is not updated at the same
time. Each image layer can be updated based on scene priorit

As previously discussed, an affine image transformation can b
applied to each image layer at video rates as it is composited.
This affine transformation is used to simulate a 3D
transformation of the object. The appropriate affine transform
and the geometric and photometric error that results is compu
based on a least square error of selected points within the obje

The host software maintains a priority list of image layers to be
updated based on perceptible error and object priorities. More
error is allowed for objects that are not considered primary,
allowing higher quality to be maintained for the important
elements in the scene. For those objects that are not updated,
system will always try to produce the best possible result using
affine transforms on previously rendered image layers.

Image layer transforms can be processed considerably faster
than re-rendering the geometry - typically 10 to 20 times faster
Since the frame to frame changes of animated objects are
typically small, an affine transformed image of a 3D object can
be used for several frames before incurring enough distortion
require re-rendering. This gives a tremendous performance
advantage to the front end of the graphics pipeline; and since
polygon rendering requires significantly more processing
resources, the net result is significantly higher price-
performance.

Image Layer Chunking

As previously noted, all image layers are processed as 32 x 32
pixel regions known as chunks. Prior to sending graphics
rendering primitives to the Talisman hardware, the host
processor must sort the geometry for each image layer into the
independent regions.

After some experimentation, we determined that it was more
efficient to sort into 64 x 64 regions and allow the hardware to
process this geometry for each of the four 32 x 32 chunks in th
region.

Sorting into these 64 x 64 regions can be accomplished using
variety of algorithms. In the simplest case, a binary sort is
performed based on bounding volumes using an algorithm
similar to polygon scanline techniques (active lists, etc.). More
advanced algorithms utilize incremental algorithms based on t
temporal behavior of the environment. We have found that we
can achieve full performance using static algorithms on a mid-
range personal computer.

Primitive Rendering

The Talisman software provides the capability to render
independent triangles, meshed triangles (strips and fans), line
and points. All of these primitives are converted to triangles fo
rendering by the Polygon Object Processor. Triangle rendering
provides numerous simplifications in the hardware since it is
always planar and convex.

All coordinate transformations, clipping, lighting, and initial
triangle set-up is handled by the Media DSP using 32 bit IEEE
floating point.

During scan conversion, the Polygon Object Processor uses th
linear equation parameters generated by the Media DSP to
determine if the triangle is visible in the current chunk. The edge
equations are also stored in the Primitive Registers until
required by the Pre-Rasterizer and Rasterizer.

As previously discussed, rasterization is split into two sections
which are separated by several hundred clock cycles. This
separation allows the first section (the Pre-Rasterizer) to
determine which texture blocks will be required to complete
rendering of the triangle. This information is sent to the Texture
Cache Controller so that it can fetch the necessary data from the
common memory system, decompress it, and move it into the
specialized high-speed on-chip memory system used by the
texture filtering engine, as described below.

The second section, the Rasterizer, calculates the color,
translucency, depth, and coverage information, and passes this
to the Pixel Engine where it can be combined with the texture
information to determine the output pixel color.

Texture Mapping

Texture data is stored in the common memory system in the
TREC compressed image format. 8x8 blocks are grouped
together in 32x32 chunks for memory management purposes,
although each 8x8 block is individually addressable. The 32x32
chunks are identical in format to the image layer chunks,
allowing textures and image layers to be used interchangeably
(although textures are generally mip-mapped).

Data is fetched from the common memory in blocks called
Memory Allocation Units. Each MAU is 128 bytes, allowing
high bandwidth utilization from the Rambus DRAMs to be
achieved.

As texture blocks are needed, they are fetched into a compresse
texture cache in the Polygon Object Processor. The compressed
texture cache holds sixteen MAUs. Holding texture data in
compressed form increases the effective size of the compressed
texture cache by the compression factor (typically 15 times).

Texture blocks are decompressed as required by the texturing
engine and placed in an on-chip decompressed texture cache. A
total of sixteen 8x8 texture blocks are cached in RGB∝ format.
The texture cache allows each texel to be used for an average of
2.5 pixel calculations.

A texture filter kernel is generated on the fly for each pixel,
depending on the texture resolution, offset, orientation, and Z-
slope. The texture processor supports anisotropic filtering with
up to 2:1 anisotropy at full pixel rendering rates. Higher
anisotropy is supported at lower rendering rates. The resulting
filter quality is considerably better than the tri-linear filtering
that is commonly used in high-end graphics workstations, and
will result in sharper looking images. Tri-linear filtering is also
available at full pixel rendering rates.

Hidden Surface Removal

The Polygon Object Processor has an on-chip 32 x 32 pixel
depth buffer (with 26 bits per pixel) used to store the depth of
the closest primitive to the eye point at each pixel location. The
26 bit depth value uses between 20 and 24 bits for depth with
the remaining 2 to 6 bits used for priority and/or stencil. Priority
is used to eliminate depth buffering artifacts due to coplanar
objects. Priority is tagged per surface, and indicates which
surface should be considered as closer to the viewpoint, if the
depth of the two surfaces at the specific pixel location are within
a certain depth tolerance of each other. The depth tolerance is a

.

all

ry
ith

t,

nti-

t
e

4

s
h

r

st
t

ing

e

n

t

e

e

.

fixed value which is based on the overall accuracy of the
graphics pipeline with regards to computing pixel depth values

The Polygon Object Processor also supports translucent
triangles, translucent textures, and triangle edge anti-aliasing,
of which fall outside of normal depth buffer operations. To
properly compose pixels which are only partially covered, or
have an alpha value less than 1.0, the Talisman system has
special anti-aliasing hardware, which is described below.

Anti-Aliasing

One of the significant advantages of the chunking architecture
used by Talisman is that high quality anti-aliasing can be
implemented cost effectively, without the need for large memo
systems. The algorithm we have implemented is compatible w
depth buffering and translucent surfaces.

The color buffer always stores the pixel value for the front mos
fully opaque, fully covered pixel at each pixel location in the
32x32 chunk. Pixels with partial geometric coverage or which
are translucent are contained in a fragment buffer (the basic a
aliasing algorithm is loosely based on the A-Buffer algorithm
described by L. Carpenter [Car84]). Each entry in the fragmen
buffer provides the color, alpha, depth, and geometric coverag
information associated with these pixels. Multiple fragment
buffer entries can be associated with a single pixel location
within the 32x32 chunk. Memory is managed within the
fragment buffer using a linked list structure.

To represent the geometric coverage of a pixel by a polygon
edge, a coverage mask is used. In the Talisman system, a 4x
mask is used, which effectively divides each pixel into 16 sub-
pixels. The Talisman hardware does not store an individual
entry for each sub-pixel, as do many high end graphics system
of this quality, but instead stores a simple coverage mask whic
tags which virtual sub-pixels the fragment entry would cover.
The 4x4 coverage mask is generated using an algorithm simila
to the algorithm described by A. Schilling [Sch91] in order to
provide improved dynamic results for near horizontal and near
vertical edges.

All fragments generated by the scan converter are tested again
the 32x32 pixel depth buffer prior to being sent to the fragmen
buffer. This eliminates storage and subsequent processing of
any fragments which are obscured by a nearer fully covered,
fully opaque pixel.

To further reduce the number of fragments that are stored and
subsequently processed, the Pixel Engine implements a merg
operation for complimentary fragments. In many cases, at a
single pixel location, sequential fragments are from the mating
edges of adjacent polygons which represent a common surfac
within an object. In these cases, the pixel depth and color are
often virtually identical, with the only difference between the
two fragments being the coverage masks. The Pixel Engine
compares the incoming fragment to the most recently received
fragment at that pixel location, and if the depth and color are
within predefined limits, combines the fragments by ORing the
incoming fragment coverage mask with the stored fragment
coverage mask, and stores the result in place of the stored
coverage mask. The rest of the incoming fragment data is
discarded, eliminating the use of another fragment entry. Whe
this operation occurs, the resulting mask is tested to see if full
coverage has been reached. If full coverage is achieved, the
pixel is moved out of the fragment buffer and placed in the
32x32 pixel depth buffer, freeing up additional fragment
memory.

Once all the polygons for the chunk are rendered, the anti-
aliasing engine resolves the remaining pixel coverage values
performing front-to-back compositing of each pixel which has
one or more fragments associated with it. As a chunk is being
resolved, the Rasterizer, Pixel Engine, etc. are rendering the nex
chunk. As fragments are freed up by the resolve process, they
are added to the free fragment list where they can be used by th
next chunk being rendered.

Shadows

The Pixel Engine supports a full range of compositing functions
which are useful for multipass rendering. One of the most
common uses is for the generation of real-time shadows. The
Polygon Object Processor implements a shadow buffer
algorithm that determines which parts of the object are in
shadow from a given light source. This is done in three passes,
assuming a single light source.

In the first pass, a shadow buffer is generated by rendering the
scene from the point of view of the light source [Wil78, Ree87].
The shadow buffer generated from this step is a depth buffer,
where each pixel depth location is set to the average depth of th
two closest surfaces to the light source. This is done to eliminate
the possibility of the front surface casting a shadow on itself due
to accuracy errors in the algorithm, and was first described by A.
Woo [Woo92]. This shadow buffer is then saved in the common
memory system.

In the second pass, the scene is rendered from the eyepoint,
generating a normally lit scene from the single light source.

In the third pass, the scene is rendered from the eye point, to
generate the shadow contribution to the image. As the scene is
rendered, the shadow buffer is accessed using the texture map
addressing hardware, and the shadow buffer depth is compared
with a projection of the surface depth in the shadow buffer
coordinate system. If the surface depth is behind the shadow
buffer depth, it is in shadow. For each pixel in the eyepoint
scene, a 4x4 or 8x8 set of nearest shadow buffer locations are
visited, each producing an in-front or behind result. A trapezoid
weighted filter is multiplied against the results of the shadow
depth compares, giving a resulting shadow factor, ranging from
0 to 1.0. The trapezoid filter gives a soft, anti-aliased edge to
the shadow in the resulting scene. The shadow factor is used to
attenuate the pixel intensity from the scene rendered in pass two

Display Image Generation

A data structure defining the image layer display list (sorted in
depth order) is stored in shared memory and is traversed every
frame time to determine how the image layers are displayed.
This data structure can be modified by the host at any time to
control the temporal behavior of each image layer (and hence
each independently rendered object).

Image layer compositing is performed 32 scanlines at a time.
The Image Layer Compositor traverses the image layer data
structure (sorted in front to back order), performing image
transforms on those chunks that are visible in each 32 scanline
band.

The Compositing Buffer is a specialty memory device developed
for the Talisman architecture. This part has two 32 scanline
color buffers (24 bit RGB) and a 32 scanline alpha buffer. One
of the color buffers is used for compositing into while the other

,

is being used for streaming the video data out to the monitor.
The two buffers ping-pong back and forth so that as one scanline
region is being displayed, the next is being composited. The
single 32 scanline alpha buffer is used only for compositing and
is cleared at the start of each new 32 scanline region.

The Image Layer Compositor (which does the image layer chunk
addressing, decompressing, and image processing), passes the
color data and alpha data to the Compositing Buffer for each
pixel to be composited. Since the sprites are processed in front
to back order, the alpha buffer can be used to accumulate
opacity for each pixel, allowing proper anti-aliasing and
transparency.

FUNCTIONALITY AND PERFORMANCE

The features and major performance goals for the reference
implementation are:

• Single PCI board implementation with audio, video, 2D
and 3D graphics.

• High resolution display capability - 1344 x 1024 @ 75 Hz.

• 24 bit true-color pixel data at all resolutions for maximum
image fidelity.

• Optimized for 3D animation at full refresh rates (75 Hz)
using a combination of image layer animation and 3D
rendering. Scene complexity of 20,000 to 30,000 rendered
polygons or higher can be supported. This is comparable
to a 3D graphics workstation capable of 1.5 to 2 million
polygons per second.

• Polygon Object Processor pixel rendering rate of 40
Mpixels per second with anisotropic texturing and anti-
aliasing. Image Layer Compositor pixel compositing rate
of 320 Mpixels/sec.

• Very high quality image generation incorporating
anisotropic texture filtering, subpixel-filtered anti-aliasing,
translucent surfaces, shadows, blur, fog, and custom
shading algorithms.

• Front-end geometry processor to off-load transformations,
clipping, lighting, etc.

• Full resolution (720 x 486) MPEG-2 decode, as well as
other video codecs. Video can be used as surface textures
and can be combined with graphics animations.

• Base system has two-channel 16-bit audio inputs and
outputs with DSP based MIDI synthesis (wave table and
other mechanisms supported), 3D spatialization, and
digital audio mixing. Other audio processing is also
supported.

CONCLUSIONS

The Talisman architecture demonstrates how a fresh look at 3D
animation hardware can result in dramatic improvements in
price-performance. The system described in this paper has a bill
of materials of $200 to $300, yet can achieve performance and
quality comparable or superior to high-end image generators and
3D graphics workstations.

The first reference implementation is a high-end PC board level
system with adequate functionality to meet a broad range of
applications. The goal of the Talisman architecture is to
significantly improve the quality, performance, and integration
of media technologies on the PC. This first implementation is
intended to be a realization of this goal at a price point that is
viable for consumer applications, and to be a reference from
which derivative designs can be created.

Although the reference implementation or other products based
on this technology are not yet on the market, we believe that
products based on the architecture described in this paper will
have retail street prices of $200 to $500.

The Talisman architecture has been fully simulated and Verilog
models are complete. We expect prototype implementations of
this hardware by late this year.

ACKNOWLEDGMENTS

The authors would like to thank the entire Talisman research and
develop team for their contributions to this program. We would
specifically like to thank Jim Blinn, Joe Chauvin, Steve Gabriel,
Howard Good, Andrew Glassner, Kent Griffin, Bruce Johnson,
Mark Kenworthy, On Lee, Jed Lengyel, Nathan Myhrvold,
Larry Ockene, Bill Powell, Rob Scott, John Snyder, Mike
Toelle, Jim Veres, and Turner Whitted for their contributions to
the HW architecture, algorithms, and demos, although many
others also contributed.

REFERENCES

[Ake88] Akeley, K. and T. Jermoluk, “High Performance
Polygon Rendering”, Proceedings of SIGGRAPH 1988 (July
1988), p239-246.

[Ake93] Akeley, Kurt, “Reality Engine Graphics”, Proceedings
of SIGGRAPH 1993 (July 1993), p109-116.

[Car84] Carpenter, L. “The A-Buffer, an Anti-Aliased Hidden
Surface Method”, Proceedings of SIGGRAPH 1984, (July
1984), p103-108.

[Che94] Shenchang Eric Chen, Lance Williams, View
interpolation for image synthesis, Proceedings of SIGGRAPH
93, (August 1993), pp. 279-288.

[Che95] Shenchang Eric Chen, QuickTime VR—an image
based approach to virtual environment navigation, Proceedings
of SIGGRAPH 95, (August 1995), pp. 29-38.

[Coo84] Cook, R, “Shade Trees”, Proceedings of SIGGRAPH
1984, July 1984, p223-231.

[Coo87] Cook, R., L. Carpenter, E. Catmull, “The REYES
Image Rendering Architecture, Proceedings of SIGGRAPH
1987 (July 1987). p95-102

[Fuc89] Fuchs, H., J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, L. Isreal, “Pixel
Planes 5: A Heterogenous Multiprocessor Graphics System
Using Processor-Enhanced Memories”, Proceedings of
SIGGRAPH 89, p79-88.

[Han90] Hanrahan, P. and J. Lawson, “A Language for Shading
and Lighting Calculations”, Proceedings of SIGGRAPH 1990,
August 1990, p289-298.

[Lev84] Levinthal, A., T. Porter, “Chap - a SIMD Graphics
Processor”, Proceedings of SIGGRAPH 84, p77-82.

[Mic95] Microsoft, “DirectDraw API Specification” and
“Direct3D API Specification”, Microsoft Corporation, Redmond
WA, 1995.

e
[McM95] Leonard McMillan, Gary Bishop, Plenoptic modeling:
an image-based rendering system, Proceedings of SIGGRAPH
95, (August 1995), pp. 39-46.

[Mol91] Molnar, S., “Image Composition Architectures for
Real-Time Image Generation”, PhD Dissertation, University of
North Carolina, 1991.

[Mol92] Molnar, S., J. Eyles, J. Poulton, “PixelFlow: High
Speed Rendering Using Image Composition”, Proceedings of
SIGGRAPH 1992 (July 92), p231-240

[Nis83] H. Nishimura, H. Ohno, T. Kawata, LINKS-1: a parallel
pieplined multimicrocomputer system for image creation,
Proceedings of the 10th Symposium on computer architecture
(1983), pp.387-394

[Nvi95] Nvidia, various press releases on the Nvidia NV1
Multimedia Accelerator, Nvidia Corporation, Sunnyvale CA,
1995.

[Pot89] Michael Potmesil and Eric Hoffert, The PixelMachine: a
parallel image computer, Proceedings of SIGGRAPH 89, (July
1989), pp. 69-78.

[Reg94] Regan, M. and R. Pose, “Priority Rendering with a
Virtual Reality Address Recalculation Pipeline”, Proceedings of
SIGGRAPH 1994 (July 94), p. 155-162.

[Ree87] Reeves, W. , D. Salesin, R. Cooke, “Rendering Anti-
aliased Shadows with Depth Maps”, Proceedings of SIGGRAPH
87, p283-291.

[Sch91] Schilling, A. “A New Simple and Efficient Anti-
aliasing with Subpixel Masks”, Proceedings of SIGGRAPH
1991 (July 1991), p133-141.

[Seg92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, Paul Haeberli, Fast shadows and lighting effects using
texture mapping, Proceedings of SIGGRAPH 92, (July 1992),
pp. 249-252.

[Wil78] Williams, L., “Casting Curved Shadows on Curved
Surfaces”, Proceedings of SIGGRAPH 78, p270-274.

[Woo92] Woo, A. in “The Shadow Depth Map Revisited”, in
Graphics Gems, edited by D. Kirk, Academic Press, Boston,
1992, p338-442.

SAMPLE
This sample image, and the one shown on the frontispiece of th
1996 SIGGRAPH Proceedings were generated using a bit and
cycle accurate simulator of the Talisman reference hardware.
Both of these images are single frames from an animation that
will be rendered in realtime on the Talisman hardware.

